

4.5V~18V输入, 2.5A同步降压变换器

18V Input, 2.5A, Synchronous Buck Converter

FEATURES

- 2.5A converter with 100m $\!\Omega$ and 60m $\!\Omega$ FETs
- Fast transient response with minimum external components
- Input voltage range: 4.5V~18V
- Output voltage range: 0.6 V~9V
- Pulse skip mode to keep high efficiency in light load
- 850kHz switching frequency
- Shutdown current: <=2 µA (typical)
- Soft start and start delay with pre-biased output voltage
- Cycle-by-cycle over current limit
- Hiccup-mode over current protection
- $\boldsymbol{\cdot}$ Non-latching Undervoltage protection and
- Thermal Shutdown protection
- Enable pin
- Packages: Pb-free Packages, SOT563 and SOT23-6
- · 12V power rail applications
- TV
- · Networking home terminal
- E-Meter
- Set top box
- Surveillance
- DSL Modem

Embedded systems

- ・2.5A降压,内置100mΩ和60mΩ功率管
- ·于快速瞬态响应,外部元器件少
- ・输入电压范围: 4.5V~18V
- ・输出电压范围: 0.6V~9V
- ·脉冲跳跃模式使得轻载下高效率
- ・850kHz开关频率
- ・关断电流<=2uA (典型值)
- · 软起动, 输出预先有电压时有启动延迟
- ・逐周期过流检测限制
- ·打嗝模式过流关断
- ·欠压保护、过热关断保护,不锁定可自动恢复
- ・具有使能pin
- ·无铅封装, SOT563, SOT23-6
- ・12V电源轨

・嵌入式系统

- ・电视
- ・家庭网络终端

・机顶盒

- ・电表
- ・监控
- ・数字信号调制解调器

DESCRIPTION

The HT7712 is a 2.5A, step-down, buck converter with minimum external components and low shutdown current.

The device delivers a fast transient response with both low ESR (polymer) and ultra-low ESR (ceramic) output capacitors, and no external compensation is needed.

The device operates in Pulse Skip Mode when in light load with high efficiency.

The HT7712 is available in SOT563 and SOT23-6 packages.

HT7712 是一款 2.5A 降压转换器,具有最少的外部元件和低关断电流。

该器件具有快速瞬态响应的特点,输出电容器 采用低 ESR (聚合物)或超低 ESR(陶瓷), 无需外部补偿。

该器件在轻载时以脉冲跳跃模式工作,达到高效。

HT7712 采用 SOT563 和 SOT23-6 封装。

ORDERING INFORMATION

Part Number	Package Type	Marking	Operating Temperature Range	Shipping Package / MOQ
HT771219STNR	SOT23-6 (STN)	219YWW	-40°C∼125°C	Tape and reel / 3000pcs
HT771229STNR	SOT563 (STN)	229YWW	-40°C∼125°C	Tape and reel / 3000pcs

Part Number

■ TERMINAL CONFIGURATION

HT771219 (SOT23-6) Top View

HT771229(SOT563) Top View

■ TERMINAL FUNCTION

Termi	nal No.		
HT771219	HT771229	Name	Description
1	4	BST	Bootstrap. Power supply for the high-side MOSFET driver. Connect a bypass capacitor between BST and SW. BST是内部高端MOSFET驱动器的正电源。在BST和SW之间连接一个旁路电容器。
2	3	GND	Ground. GND should be placed as close to the output capacitor as possible to avoid the high-current switch paths. 地。GND应尽可能靠近输出电容,以避免高电流开关路径。
3	6	FB	Feedback. Connect resistor divider to output voltage. 反馈。接分压电阻到输出电压。
4	5	EN	Enable input. Pull EN below the specified threshold to shut down the device. Pull EN above the specified threshold to enable the device. Don't leave EN floating. EN can be connected to VIN. The input undervoltage lockout can be adjusted by EN resistor divider. 使能脚。将EN拉到阈值以下以关闭。将EN拉至阈值以上启用。EN脚不能悬空,可以接到VIN脚。EN脚接分压电阻到VIN,可调节输入欠压保护电压。
5	1	VIN	Input supply. VIN supplies power to all of the internal control circuitries. A decoupling capacitor to ground must be placed close to VIN to minimize switching spikes. 输入电源。VIN为所有内部控制电路供电。接地滤波电容必须放置在VIN附近,以减少开关尖峰。
6	2	sw	Switch node. 开关端口。

■ SPECIFICATIONS¹

• Absolute Maximum Ratings ²

PARAMETER	Symbol	MIN	TYP	MAX	UNIT
VIN supply voltage	VIN	-0.3		19	V
BST voltage	BST	-0.3		24.5	V
BST voltage (10ns transient)	BST	-0.3		26.5	V
Voltage between BST and SW	BST to SW	-0.3		5.5	V
FB voltage	FB	-0.3		5.5	V
EN voltage	EN	-0.3		VIN+0.3	V
SW voltage	SW	-2		19	V
SW voltage (10ns transient)	SW	-3.5		21	V
Moisture Sensitivity Level (MSL)			MSL3		
Junction Temperature	TJ	-40		150	°C
Storage Temperature	T _{STG}	-55		150	°C
ESD, Human-body model (HBM)	HBM		±2000		V
ESD, Charged-device model (CDM)	CDM		±500		V

• Recommended Operating Conditions

PARAMETER	Symbol	CONDITION	MIN	TYP	MAX	UNIT
VIN supply voltage	VIN	X	4.5		18	V
BST voltage	BST	XX	-0.1		22	V
Voltage between BST and SW	BST to SW		-0.1		5	V
FB voltage	FB	L-X >	-0.1		4.5	V
EN voltage	EN	~	-0.1		VIN	V
SW voltage	SW,		-1.8		18	V
Junction Temperature	TJ		-40		125	°C

• Electrical Characteristics

VIN = 12V, $T_A = +25^{\circ}C$, unless otherwise noted.

PARAMETER	Symbol	CONDITION	MIN	TYP	MAX	UNIT
VIN UVLO threshold	Vuvlo	Rising		4.0		V
VIN OVEO Infestiola	VUVLO	Falling		3.6		V
VIN UVLO hysteresis	V _{hys}			0.3		V
Quiescent supply current	lα	$V_{EN} = 12V$, $V_{FB} = 1.0$ V, no switching		220		uA
Shutdown supply current	I _{SD}	$V_{EN} = 0V$		0.66		μA
High-side switch on resistance	Rds(on)_H	V_{BST} - V_{SW} = 5.5V		100		mΩ
Low-side switch on resistance	Rds(on)_L			60		mΩ
Current limit (low-side switch)	ILIM			3.0		А
Zero cross current detection	I _{ZC}			0		А
EN up threshold	V _{ENH}			1.3		V
EN low threshold	VENL			1.17		V
EN threshold hysteresis	VENHY			130		mV
Internal resistor between EN to GND	Ren	V _{EN} = 12 V		1500		kΩ
Feedback voltage	VFBH			600		mV
FB input current	I _{FB}	V _{FB} = 0.6V	-100		100	nA
Minimum on time	ton_min			80		ns
Minimum off time	toff_min			165		ns
Soft-start time	tss			1.5		ms

¹ Depending on parts and PCB layout, characteristics may be changed.

² Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

HT7712 Buck Converter

Switching frequency	f _{sw}	$V_{IN} = 12 V, V_{OUT} = 3.3 V, CCM$ mode	850	kHz
Output UVP falling threshold	VUVP	Hiccup detect	65%	
UVP propagation delay	tppd		0.6	ms
Hiccup time before restart	thcp_re		26	ms
Thermal shutdown		Trigger thermal shutdown	150	°C
mermai shutdown		Hysteresis	25	°C

■ TYPICAL OPERATING CHARACTERISTICS

APPLICATION INFORMATION

1 Description

The HT7712 is a 2.5A, step-down, buck converter with minimum external components and low shutdown current.

The device employs an adaptive on-time PWM controller with internal compensation to realize pseudo-fixed frequency and minimum external components requirement.

The device delivers a fast transient response with both low ESR (polymer) and ultra-low ESR (ceramic) output capacitors, and no external compensation is needed.

The device operates in Pulse Skip Mode when in light load with high efficiency.

The HT7712 is available in SOT563 and SOT23-6 packages.

2 Enable (EN) Control

The HT7712 has a dedicated enable control pin (EN) with positive logic. Its falling threshold is 1.17V, and its rising threshold is 1.3V.

When EN is below the threshold, the device is in shutdown mode where the switching regulator turns off.

3 Soft Start and Start Delay with Pre-biased Output Voltage

The HT7712 employs an internal 1.5ms soft start to ramp up the FB voltage from 0V to 0.6V linearly once EN pulled high.

If the output voltage is prebiased when EN is pulled high, the device start switching and ramping up only after internal reference voltage is larger than V_{FB} .

4 Under-Voltage Lockout (UVLO)

Under-voltage lockout (UVLO) is implemented to protect the chip from operating at an insufficient supply voltage. The UVLO rising threshold is about 4V, while its falling threshold is about 3.6V.

5 Thermal Shutdown

Thermal shutdown is implemented to prevent the chip from operating at exceedingly high temperatures. When the silicon die temperature is higher than its upper threshold, the entire chip shuts down. When the temperature is lower than its lower threshold, the chip is enabled again. HT7712 是一款 2.5A 降压转换器,具有最少的外部元件和低关断电流。

HT7712 采用带内部补偿的自适应导通时 间 PWM 控制,可实现伪固定频率和最小外部 组件要求。

该器件具有快速瞬态响应的特点,输出电容器采用低 ESR (聚合物)或超低 ESR (陶瓷), 无需外部补偿。

该器件在轻载时以脉冲跳跃模式工作,达到高效。

HT7712 采用 SOT563 和 SOT23-6 封装。

HT77712xx 的 EN 脚高电平有效,控制芯 片使能。其下降阈值为 1.17V,上升阈值为 1.3V。 当 EN 低于 1.17V,器件进入关断模式。

▶ HT7712 采用内部 1.5ms 软启动,一旦 EN 拉高,FB 电压就会线性上升至 0.6V。

如果 EN 被拉高时输出有预偏置电压,器件 仅在内部基准电压大于 V_{FB} 后开始工作。

欠压锁定(UVLO)功能可避免芯片工作在 电源电压不足的条件。UVLO上升阈值约为4.0V, 下降阈值为 3.6V。

过热关断保护是为了防止芯片在极高的温 度下工作。当芯片温度高于其上限阈值时,整个 芯片关闭。当温度低于其下限阈值时,芯片再次 启用。

6 Continuous Conduction Mode and Pulse Skip Mode

Once the load current is higher than half of peak-to-peak inductor current, the frequency is pesud fixed, the output voltage ripple is pretty low, and a maximum larger than 2.5A output current can be delivered.

The inductor current is reduced when the output current is decreased. Once the ripple of inductor current touches zero level, the low side switch is turned off. As the load current further decreases, the device works in a discontinuous conduction mode. The on-time is kept almose the same as in the continuous conduction mode, so that t it takes longer time to discharge the output capacitor with smaller load current to the level of the reference voltage. This makes the switching frequency lower, proportional to the load current, and keeps the light load efficiency high. As the load current continues to decrease, the switching frequency also decreases. The on-time starts to decrease once the switching frequency is lower than 250 kHz. The on-time can be about 22% reduced at most for extremely light load condition. This function is employed to achieve smaller ripple at extremely light load condition.

The transition point to the light load operation current IOUT LL can be calculated as follows.

$$I_{OUT_{LL}} = \frac{1}{2 \times L \times f_{sw}} \times \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{V_{IN}}$$

7 Over Current and Short Protection

The device is protected from over current by cycle-by-cycle current limiton the valley of the inductor current. The low side power MOSFET current is accurately sensed via a current sense MOSFET. When the LS MOSFET turns on and the inductor current ramps down, the LS MOSFET will not turn off until the inductor current ramps below ILIM. And after a dead time, the high side MOSFET turns on.

Once the V_{FB} drops below threshold (typ. 0.38V) after a delay time (typ. 2.5ms), hiccup-mode over current protection is activated and the regulator is shutdown for a restart time (typ. 26ms). After the restart time, the device will try to restart. If the over current condition still exist, the operation will repeat until the over current condition is removed.

8 Setting the Output Voltage

The output voltage (V_{OUT}) is set by a resistor divider (R_{FBT} and R_{FBB}). The resistors can be determined with following Equation.

Where V_{FB} is 0.6V, typically.

当负载电流高于峰峰值电感电流的一半,频 率固定,输出电压纹波低,最大输出电流可达 2.5A 以上。

当输出电流减小时, 电感电流减小。 一旦电 感电流纹波触及零电平,低边开关管关闭。随着 负载电流的进一步减小,器件以不连续导通模式 工作。导通时间与连续导通模式相同,因此将负 载电流较小的输出电容放电至基准电压水平需 要更长的时间。这使得开关频率更低, 与负载电 流成正比,并保持高的轻载效率。随着负载电流 的不断减小,开关频率也会降低。一旦开关频率 低于 250 kHz,导通时间就会开始下降。对于极 轻负载条件,导通时间最多可减少约 22%。此 功能用于在极轻负载条件下实现较小的纹波。

轻负载工作电流 lour LL 的过渡点可以计算 如下。

$$\frac{V_{IN}}{V_{IN}} \times \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{V_{IN}}$$
(1)

该器件通过对电感电流谷值的逐周期电流 限制来防止过流。低侧功率管的电流被实时监测。 当 LS MOSFET 导通且电感电流斜坡下降时, 直到电感电流斜坡低于 ILIM , LS MOSFET 关 闭,死区时间过后,高端 MOSFET 导通。

一旦 VFB 在延迟时间 (典型值 2.5ms) 后降 至门限(典型值0.38V)以下,打嗝模式过流保 护将被激活,器件关断。重启时间(典型值为 26ms)过后,器件将尝试重启。如果过流条件 仍然存在,该操作将重复,直到消除过流条件。

输出电压 (VOUT) 由电阻分压器 (R_{FBT} 和 R_{FBB})设置。 电阻可以通过以下公式确定。 其中, VFB=0.6V。

$$VOUT = V_{FB} \times \left(1 + \frac{R_{FBT}}{R_{FBB}}\right)$$
(2)

9 Selecting the Inductor and Output Capacitor

Use the inductor and output capacitor as following.

OUTPUT	R _{FBT} (kΩ)	R _{FBB} (kΩ)		L (uH)		C _{оυт} (uF)	
VOLTAGE (V)	I (K22)	I (FBB(I/77)	MIN	TYP	MAX		
1	6.65	10	1	1.2	4.7	20~68	
1.05	7.5	10	1	1.2	4.7	20~68	
1.2	10	10	1.2	1.5	4.7	20~68	
1.5	15	10	1.5	1.5	4.7	20~68	
1.8	20	10	1.5	2.2	4.7	20~68	
2.5	31.6	10	2.2	2.2	4.7	20~68	$\langle \rangle$
3.3	45.3	10	2.2	3.3	4.7	20~68	
5	73.2	10	3.3	4.7	4.7	20~68	
6.5	97.6	10	3.3	4.7	4.7	20~68	

推荐电感和输出电容如下表。

The inductor peak-to-peak ripple current I_{L_PP} , peak current I_{L_PK} and RMS current I_{L_RMS} are calculated as following. The inductor saturation current rating must be greater than the I_{L_PK} and the RMS or heating current rating must be greater than I_{L_RMS} .

电感峰峰值电流 IL_PP、峰值电流 IL_PK 和 RMS 电流 IL_RMS 计算如下。电感额定饱和电流 必须大于 IL_PK, RMS 或热电流额定值必须大于 IL_RMS。

$$I_{L_{PP}} = \frac{V_{OUT}}{V_{IN_{MAX}}} \times \frac{V_{IN_{MAX}} - V_{OUT}}{L \times f_{SW}}$$
(3)

$$I_{L_{PK}} = I_{OUT} + \frac{I_{L_{PP}}}{2} \tag{4}$$

$$I_{L_{RMS}} = \sqrt{I_{OUT}^{2} + \frac{1}{12} \times I_{L_{PP}}^{2}}$$
(5)

The output capacitor should be used with ceramic or other low ESR capacitors. The required RMS current rating for the output capacitor is as follow. 输出电容应使用陶瓷电容或其他低 ESR 电容。输出电容要求的额定 RMS 电流如下。

$$I_{C_{RMS}} = \frac{\left(V_{IN_{MAX}} - V_{OUT}\right) \times V_{OUT}}{\sqrt{12} \times F_{SW} \times V_{IN_{MAX}} \times L}$$
(6)

10 Bootstrap Capacitor Selection

A 0.1uF ceramic capacitor with 10V or higher voltage rating should be connected between BST and SW.

11 Input Capacitor (CIN)

An input decoupling capacitor (0.1 uF) and a bulk capacitor (Over 10 uF) is needed. The voltage rating should be higher than the maximum input voltage.

在 BST 和 SW 之间接一个 0.1uF 陶瓷电容器,额定电压 10V 或更高。

输入端推荐一个滤波电容(0.1uF)和一个 储能电容(超过 10uF)。额定电压应高于最大输 入电压。

12 PCB Layout Guidelines

Efficient PCB layout is critical for stable operation. For best results, refer to following figure and follow the guidelines below.

(1) Place the input capacitor and output capacitor as close to the device as possible.

(2) Keep the power traces very short and fairly wide, especially for the SW node.

This can help greatly reduce voltage spikes on the SW node and lower the EMI noise level.

(3) Run the feedback trace as far from the inductor and noisy power traces (like the SW node) as possible.

有效的 PCB 布局对于稳定运行至关重要。 要获得最佳结果,请参考下图并遵循以下指南。

(1)将输入电容、输出电容尽可能靠近芯 片。

(2)保持电源轨迹非常短且相当宽,特别 是对于 SW 节点。

这有助于大大降低 SW 节点上的电压尖峰, 并降低 EMI 噪声水平。

(3) FB 走线尽可能远离电感和功率走线 (如 SW 节点)。

Figure 2 HT771219 Top Layer

Figure 3 HT771219 Bottom Layer

Figure 5 HT771229 Top Layer

Figure 6 HT771229 Bottom Layer

PACKAGE OUTLINE

SOT23-6

C

C2

B2

COMMON DIMENSIONS CUNITS MEASURE-MILLIMETER							
SYMBOL	MIN	NOM	MAX				
A	2.82	2.92	3.02				
A1	0.90	0.95	1.0				
A2	0.30	0.35	0.40				
В	1.52	1.62	1.72				
B1	2.80	2.90	3.0				
B2	0.12	0.128	0.135				
С	1.05	1.10	1.15				
C1	0.03	0.08	0.13				
C2	0.6	0.65	0.7				
D	0.03	0.08	0.13				
D1	0.4	0.45	0.5				
D2		0.25TYP					
D3	0.6	0.65	0.7				
	SYMBOL A A1 A2 B B1 B2 C C1 C1 C2 D D1 D2	CUNITS MEASU SYMBOL MIN A 2.82 A1 0.90 A2 0.30 B 1.52 B1 2.80 B2 0.12 C 1.05 C1 0.03 C2 0.6 D 0.03 D1 0.4 D2 0.12	CUNITS MEASURE-MILLIMET SYMBOL MIN NOM A 2.82 2.92 A1 0.90 0.95 A2 0.30 0.35 B 1.52 1.62 B1 2.80 2.90 B2 0.12 0.128 C 1.05 1.10 C1 0.03 0.08 C2 0.6 0.65 D 0.03 0.08 D1 0.4 0.45 D2 ————————————————————————————————————				

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
A	0.525	0.600	0.021	0.024	
A1	0.000	0.050	0.000	0.002	
e	0.450	0.550	0.018	0.022	
С	0.090	0.180	0.004	0.007	
D	1.500	1.700	0.059	0.067	
b	0.170	0.270	0.007	0.011	
E1	1.100	1.300	0.043	0.051	
E	1.500	1.700	0.059	0.067	
	0.100	0.300	0.004	0.012	
L1	0.200	0.400	0.008	0.016	
θ	9° R	REF.	9° F	REF.	

技术支持与联系方式

深圳市亿胜盈科科技有限公司

联系电话:0755-21677366 网址:www.wintec-semi.com/www.wintec-semi.cn 地址:深圳市南山区东滨路立桥金融中心A座7010

扫一扫,关注我们

-20-